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A B S T R A C T

Drawing on OECD Inter-Country Input-Output Database and Carbon Dioxide Emissions Embodied 
in International Trade Database from 2000 to 2018, this study measures the level of industrial 
digitalization of 44 industries in South Africa from the input side and empirically analyzes the 
effect of industrial digitalization on CO2 emissions. The results show that industrial digitalization 
significantly reduces the intensity of CO2 emissions in production. The effect of industrial digi-
talization on CO2 emissions exhibits more prominent for the tertiary industry and those industries 
with high digital skills. The digital inputs from foreign countries have a greater impact on CO2 
emissions than domestic digital inputs. Industrial digitalization reduces CO2 emissions through 
two mechanisms: increasing productivity and optimizing the factor input structure. Furthermore, 
we compare South Africa with other four BRICS countries and find that significant emission 
reduction effects are observed through industrial digitalization in Brazil, South Africa and China. 
These findings carry important practical implications for industrial digital transformation and 
sustainable development in developing countries, particularly in promoting eco-friendly pro-
duction and enhancing the quality of economic development in African nations.

1. Introduction

The world economy is undergoing a period of transformation driven by the rapid digitalization of economic activities. Since the 
fourth industrial revolution, with the continuous acceleration of global integration, trade and economic exchanges among countries 
have become increasingly frequent, and the digital economy has emerged as a novel catalyst for economic growth.

Driven by the trend of economic globalization, the digital economy in Africa has developed rapidly, gradually forming a new 
economic form based on digital devices and technology, with widespread participation of digital enterprises and internet platforms 
(Abendin & Duan, 2021). Africa holds substantial potential for digital economic growth. According to the State of the Industry Report On 
Mobile Money (2023), Africa has the largest number of mobile currency accounts in the world. By the end of 2022, the number of 
registered mobile currency accounts in Africa reached 781 million, accounting for 48.8 % of the total global mobile currency accounts. 
African governments recognize the digital economy as a strategic enabler to achieve their aspirations of high-quality economic 
development. The Digital Transformation Strategy for Africa (2020− 2030) outlines the goal and plan for digital development in Africa, 
with the construction of “Digital Africa” has become a consensus among African countries. In 2021, South African Minister of Com-
munications and Digital Technologies published the Draft National Policy on Data and Cloud, which aims to transform South Africa’s 
economy into a digital economy that is both data-intensive and data-driven.
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With the rapid development of the world economy, humanity faces are facing unprecedented challenges and increasingly recognize 
the importance of protecting the environment. Green development is the key to a high-quality economy and lies at the core of a 
sustainable society. According to the report of CO2 Emissions in 2022 issued by International Energy Agency (IEA), the global energy- 
related carbon dioxide emissions grew by 1.1 % in 2023, increasing 410 million tonnes to reach a new record high of 37.4 billion 
tonnes. OECD shows that approximately 80 % of the energy supply in OECD countries still relies on fossil fuels, which are related to the 
use of coal, oil, natural gas and petroleum products. Especially the manufacturing and transportation, which produce most greenhouse 
gases, undermining the global efforts to mitigate climate change. Positioned at the lower end of the value chain, South Africa’s industry 
largely consists of low-tech manufacturing characterized by high energy consumption and pollution. Developing countries like South 
Africa not only emit pollutants from domestic production but also receive carbon emissions transferred from countries higher up the 
value chain (Gibbon, Bair, & Ponte, 2008; Zhang, Jiang, Tong, et al., 2017).

Against this backdrop, the present paper aims to examine the relationship between industrial digitalization and carbon dioxide 
emissions in South Africa’s industry, providing theoretical support for its sustainable development. There is no universally agreed- 
upon definition of the digital industry. According to the Roadmap toward a Common Framework for Measuring the Digital Economy 
released by OECD in 2020, the Information and Communications Technology (ICT) industry is generally considered a digital enabling 
industry and is considered a core digital economy measure in the proposed DETF definition. It provides infrastructure, digital goods, 
and services so that other producers can use it for their own interests. US Bureau of Economic Analysis (BEA) defines the digital 
economy as the sum of digital enabling infrastructure, e-commerce activities, priced digital services and federal nondefense digital 
services. The Statistical classification of Digital Economy and Core Industries (2021) issued by National Bureau of Statistics of China also 
defines the accounting framework and criteria for the digital industry.

Most studies use ICT to represent the digital economy, which does not scientifically reflect the development of the digital economy 
and will lead to biased empirical results of the study (Meng & Zhao, 2022). It is worth emphasizing that the application of digital 
technology in industry may have spillover effects and intangible impacts, so industries containing digital elements now far exceed 
those originally classified as ICT. If the digital industry includes all sectors using digital elements like data and the internet, most 
industries would soon fall under this concept, blurring the scope of the digital industry. In addition, the purpose of defining the digital 
industry in this paper is to measure the level of industrial digitalization, therefore, we focus on industries with the capacity to drive 
digital transformation, rather than those merely containing digital elements.

From the above documents and studies, we define the OECD narrow caliber digital industries based on the International Standard 
Industrial Classification of All Economic Activities (ISIC Rev4.0), as shown in Table 1.

This study empirically analyzes the effect of industrial digitalization on CO2 emissions reduction based on OECD Inter-Country 
Input-Output Database and Carbon Dioxide Emissions Embodied in International Trade from 2000 to 2018. We define the range of digital 
products to measure the level of industrial digitalization. Next, we analyze the emission reduction mechanism of industrial digitali-
zation. As for empirical analysis, we conduct a series of robustness tests and adopt several IVs in order to ensure the unbiasedness of the 
results. We also compare the emission reduction effects of industrial digitalization across different industries and BRICs countries. The 
results of the research show that 1) Industrial digitalization significantly reduces the intensity of CO2 emissions in production. 2) The 
effect of industrial digitalization on CO2 emissions is more pronounced in the tertiary industry and those industries with high digital 
skills. 3) Digital inputs from foreign countries have a greater impact on CO2 emissions than domestic digital inputs. 4) Industrial 
digitalization reduces CO2 emissions through two mechanisms: increasing productivity and optimizing factor input structure. 5) 
Compared with BRICS countries, Brazil exhibits the most significant emission reduction effects through industrial digitalization, 
followed by South Africa and China, while industrial digitalization shows no significant impact on CO2 emissions in Russia and India.

The present study contributes to the literature in the following ways. 1) We discuss the effects of industrial digitalization in 
reducing CO2 emissions from the input side, providing a complement to the research on the relationship between the digital economy 
and the environment. Most existing studies focus on the impact of digital technology on the environment and the economic benefits of 
industrial digitalization, there are few researchers have combined the level of industrial digitalization and pollution together. 2) In the 
extant literature, there is currently no unified standard for classifying digital products and digital industries. This paper identifies 
digital products in accordance with the documents issued by OECD, UNCTAD, etc., and proposes a method to measure the level of 
industrial digitalization. 3) Despite growing evidence of South Africa’s unique advantages in developing a digital economy, as yet 
relatively few studies have focused on industrial digitalization in the country. This paper explores the emission reduction mechanisms 
of industrial digitalization in South Africa and compares the effects of different industries and input sources, providing theoretical 
support and viable pathways for developing countries like South Africa to promote industrial digitalization and achieve sustainable 
development.

The remainder of this paper is organized as follows. Section 2 discusses previous literature on industrial digitalization. Section 3
explains the theoretical mechanisms. Section 4 describes methods and data. Section 5 presents empirical results. Section 6 concludes 

Table 1 
OECD digital industries.

Classification Industry code Industry name

Digital Infrastructure
C26 Computer, electronic and optical products
J61 Telecommunications
J62_J63 IT and other information services

Digital Media Services J58_J60 Publishing, audiovisual and broadcasting activities
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the paper and provides policy implications.

2. Literature review

2.1. Industrial digitalization

According to existing research, there is no unified definition for industrial digitalization. Hirsch-Kreinsen (2016) argues that in-
dustrial digitalization is a process of social and economic changes caused by the application of digital technology based on the 
application system especially in the production network, and proposes that the process of digitalization can be divided into two stages: 
the first stage, economic departments use data and information to realize the invisibility of production, consumption and circulation, 
and in the second stage, economic entity change to a digital form. Coreynen, Matthyssens, and Van Bockhaven (2017) proposed that 
digitalization refers to the increasing use of digital technology to connect people, systems, companies, products, and services.

It is worth noting the distinction between digitization and digitalization. Although the definitions of the two have been relatively 
clearly divided, there are still a large number of sources that use the two words interchangeably in papers (Bogner, Voelklein, & 
Schroedel, 2016; Skender & Ali, 2019), so judgment needs to be made based on the context. Digitization is the process of converting 
analog information into a digital format, in which the information is organized into binary digits. The result is the representation of an 
object, image, sound, document, or signal by generating a series of numbers that describe a discrete set of points or samples. For 
example, replacing hand-filled forms with an online version that goes directly into the database (Gobble, 2018). Digitalization refers to 
the use of digital technology and probably digitized information to improve and transform business processes and harvest value in new 
ways (Machado et al., 2019). Thus, our study focuses on the mechanism of digital inputs in production with the definition of this 
process as “industrial digitalization”.

Most of the extant literature on industrial digitalization mainly focus on analyzing the impacts of the Internet, information and 
communication technology (ICT), and digital technology. There is a large and growing literature that documents a link between 
digitalization and productivity growth. Manufacturing digitization improves productivity through technological innovation, auto-
mated and intelligent control, lower human errors, implementation of the hybrid lean-agile manufacturing ecosystem, etc. 
(Ghobakhloo, 2020). Digitalization can not only improve manufacturing productivity but also impact other industries and individuals. 
Bitnet adoption increased academic productivity at middle-tier universities (Agrawal & Goldfarb, 2008). Cijan, Jenič, Lamovšek, and 
Stemberger (2019) prove that digitalization improves employees’ job satisfaction and contributes to higher employee autonomy, 
which leads to more productivity. Moreover, the continuous updating of ICT and the first-mover advantage of digitalization have led to 
the diminishing effect of digitalization on productivity over time. Compared to engagement with the digital economy in later years, the 
adoption in the earlier years has a more substantial impact on future productivity (Tranos, Kitsos, & Ortega-Argilés, 2021).

In terms of information transmission, due to the application of digital technology, the industry can obtain and update market 
information promptly and feed it back to production, alleviating the production lag caused by information asymmetry and improving 
production efficiency (Zhong, Xu, Klotz, et al., 2017). Digital transformation helps to make available timely and relevant data to 
managers, employees, and external entities such that these individuals better understand the work situations being faced to carry out 
work more effectively (Dao, Langella, & Carbo, 2011).

With the integration and penetration of digital technology along the industrial network, technology and industry have formed an 
innovative development pattern of benign interaction (Basu & Fernald, 2007; Lipsey, Carlaw, & Bekar, 2005). ICT facilitates the 
emergence of new manufacturing technologies such as cloud manufacturing, and additive manufacturing (Alcácer, Cantwell, & Pis-
citello, 2016). These advanced technologies lead to cleaner production (Amjad, Rafique, & Khan, 2021). de Oliveira Neto, Correia, 
Silva, de Oliveira Sanches, and Lucato (2019) studied the Brazilian textile industry and found that technological innovation im-
provements in manufacturing processes, increasing the energetic efficiency to reduce energy consumption. Besides, the replacement of 
old equipment with advanced technology is environmentally friendly.

Overall, with the input of digital factors and the drive of digital technology, traditional industries innovate production technology, 
improve traditional production factors, transform management models, integrate digital services, and realize industrial digital 
transformation. It will increase productivity, improve resource utilization efficiency, and reduce waste, changing the traditional in-
dustrial value chain, and thereby promoting the upgrading of industrial structure (Edquist & Henrekson, 2017; Vial, 2019; Zhang, 
Zhang, Li, & Zhang, 2022).

2.2. Digitalization and environment

Closely related to our research is the impact of digitalization on the environment, and the academic community has not yet formed 
a common consensus. There is a complex and uncertain relationship between digitalization and the environment, which can be broadly 
categorized into the following three types:

First, digitalization has positive effects on the environment. The digital economy realizes a new round of energy technology 
innovation, improves energy efficiency, and reduces energy loss, thereby effectively suppressing carbon emissions. Liu, Yang, Li, and 
Zhong (2022) find that the digital economy can promote the upgrading of industrial structure and improve the urban green economy 
from three aspects: green and low-carbon development, value distribution transfer, and forced demand changes. Lei et al. (2024) find a 
significant positive association between digitalization and sustainable development, digitalization indirectly fosters green productivity 
through the promotion of technological innovation, the enhancement of human capital, and upgrades in the industrial framework. In 
Africa, ICT reduces CO2 emissions through network avenues of decreasing costs and constraints associated with economic activities 
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(Asongu, 2018).
Second, some studies have shown that the development of the digital economy has adverse effects on the environment. The use of 

digital technology not only directly increases electricity consumption but also gives rise to energy consumption through the production 
of equipment and the operation of infrastructure (Røpke & Christensen, 2012; Salahuddin & Alam, 2016). ICT agglomeration indi-
rectly increases CO2 by improving economic scale (Hao, Li, Ren, Wu, & Hao, 2023). Danish, Baloch, Saud, and Fatima (2018) point out 
that ICT, financial development and economic growth worsen the environmental quality, and the moderating effect of ICT and 
financial development increases CO2 emissions.

Third, the impact of digitalization on the environment is uncertain and has different effects depending on specific circumstances. 
Berkhout and Hertin (2004) propose three ICT-environment links: direct effect, indirect effect, and structural or behavioral effect. This 
theory has been widely accepted and recognized (Danish et al., 2018; Shehzad, Xiaoxing, Sarfraz, & Zulfiqar, 2020). Higón, Gholami, 
and Shirazi (2017) hold that the relationship between ICT and CO2 emissions is an inverted U-shaped relationship. On one hand, ICT is 
among the sources contributing to the increasing levels of CO2 emissions in terms of the production of ICT machinery and devices. On 
the other hand, it is also expected to reduce CO2 emissions on a global scale by developing smarter cities, industrial processes, and 
energy-saving gains.

In conclusion, there is abundant research on industrial digitalization, and whether the digital economy has a positive or negative 
impact on the environment is uncertain. However, these literature reviews provide limited insights into its environmental effects. The 
previous literature typically related “industrial digitalization” to digital technologies such as ICT and explored their impacts on the 
environment, rather than the overall level of industrial digitalization; while empirical studies that have measured the level of industrial 
digitalization ignore the environmental effect. Among those limited studies on African industrial digitalization, scholars tend to focus 
on improving productivity and welfare, with the lack of studies on pollution.

In view of the above issues, based on input-output analysis, this paper first identifies digital industry to measure the level of in-
dustrial digitalization in South Africa, then empirically studies the emission reduction effect of industrial digitalization from the input 
side, enriches the existing research and explores the mechanism of digital emission reduction.

3. Theoretical hypothesis

3.1. Industrial digitalization can reduce CO2 emissions in production

Industrial digitalization mainly relies on the input of digitally enabled products and the advancement of digital technology. Ac-
cording to the industrial input-output theory, the performance and technical content of intermediate input will directly affect all 
aspects of the industrial production process, including not only the most basic production cost, output quantity, and quality but also 
energy loss, human capital, emissions, and industrial added value (Miller & Blair, 2009; Oberfield, 2018).

The application of digital technology is the key to industrial digital transformation. Digital technology helps to reduce error rates 
and remove processes that rely heavily on cheap labor. At the same time, it reduces misallocation of resources, enhances energy ef-
ficiency, and provides sustainable alternatives (Mondejar, Avtar, Diaz, et al., 2021). In addition, digitalization empowers traditional 
industries with intelligent production and management, reducing excessive resource consumption and pollutant emissions, and 
thereby promoting industrial emission reduction (Li, Dai, & Cui, 2020). Utilize terminal digital technology to digitally track and 
monitor all aspects of the product, enabling on-demand supply and efficient production, ultimately leading to high efficiency and 
energy savings (Meng & Zhao, 2022). 

Hypothesis 1. Industrial digitalization can reduce CO2 emissions in production.

3.2. Industrial digitalization can enhance productivity, thereby reducing CO2 emissions

Industrial digitalization has a positive effect on reducing pollution emissions, but the specific mechanisms and ways of interaction 
are different. According to new classical economics, the development of industry is mainly affected by three factors: labor force, 
capital, and technology. Based on the perspective of production, this paper explores the mechanism of the impact of industrial digi-
talization on emission reduction from the perspective of technology effect and structural effect.

In the literature review section, it has been verified that digitalization improves productivity in various ways, such as technological 
innovation, improvement of labor quality, optimization of production processes and so on (Pan, Xie, Wang, & Ma, 2022). Due to the 
decrease in the defective rate and the productivity improvement, the energy consumption and waste generated per unit of product 
produced are reduced, thereby reducing the intensity of CO2 emissions. From another perspective, the primary objective of industry is 
profit maximization. In the initial stage, the industry focuses on enhancing productivity while overlooking environmental concerns. 
However, once productivity reaches a certain level, the industry tends to shift its focus from improving productivity to optimizing 
production processes, exploring ways to upgrade the industrial structure, and achieving sustainable development. At this stage, clean 
production receives considerable attention and the industry will allocate more capital and effort to pollution control. 

Hypothesis 2. Industrial digitalization can enhance productivity, thereby reducing carbon dioxide emissions.

3.3. Industrial digitalization can change the structure of input factors, thereby reducing CO2 emissions

The structure of input factors determines production, they are fluid with combinations and substitutions exist. Different input 
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factors lead to varying levels of productivity and result in products of distinct characteristics (Acemoglu & Azar, 2020; Simpson & 
Tsukui, 1965). Factor endowment is the basis of industrial development and transformation, and the quantity, quality, and type of 
input factor endowment determine the direction, sustainability, and value of digital transformation.

Industrial CO2 emissions are affected by the industrial structure and increase or decrease with changes in resource input structure 
and energy utilization efficiency (Brannlund & Persson, 2012; Khuntia, Saldanha, Mithas, et al., 2018). Specifically in the following 
aspects: First, digital products have the characteristics of low pollution, using digital products as inputs directly increases the pro-
portion of clean inputs in the industry. These digital inputs replace traditional raw materials, reducing the proportion of polluting 
inputs (Hirsch-Kreinsen, 2016). Second, at the same time, production factors exhibit combinability. With the increase of digital inputs, 
the industry will actively input more high-quality intermediate products, such as raw materials with high production rates and clean 
energy to match those digital inputs, to pursue the best factor utilization and adapt to digital production. Third, digital technology in 
inputs has a spillover effect, leading to changes in the original attributes of other production materials, such as transforming high- 
energy-consuming factors into low-energy-consuming factors (de Oliveira Neto et al., 2019).

Through the above methods, industrial digitalization can change the allocation structure of industrial input elements, increase the 
proportion of clean elements, reduce the redundancy of highly polluting elements, and thus inhibit the generation of industrial 
pollution. 

Hypothesis 3. Industrial digitalization can change the structure of input factors, thereby reducing carbon dioxide emissions.

4. Empirical strategy

4.1. Model specification

To estimate the consequence of industrial digitalization on CO2 emission reduction, the specification of the baseline regression is as 
follows: 

CO2intit = β0 + β1Digit +Xit + δi + δt + εit (1) 

where i is industry, t is year; CO2intit is carbon dioxide emission intensity of industry i in year t; Digit is the level of industrial digi-
talization of industry i in year t; Xit is a set of time-varying control variables for industry characteristics; δi is the industry fixed effect, δt 
is the year fixed effect, the inclusion of industry fixed effects absorbs the unobserved heterogeneity in the industry-specific de-
terminants of productivity, whereas the year dummies control for macro-economic shocks common to all industries; εit is the error 
term. Besides, we cluster the standard error at the industry level to address potential heteroskedasticity and correlation problems.

4.2. Variable

4.2.1. The level of industrial digitalization (dig)
The level of industrial digitalization is the core explanatory variable of this paper, measured by the proportion of digital inter-

mediate input to total intermediate input in the industry. The data comes from the Inter-Country Input-Output Tables (ICIO) within the 
OECD’s STAN database, covering input-output data from 2000 to 2018 for 45 sectors in South Africa. We drop the industry “T97_T98” 
due to missing data.1 The following is the specific calculation method for industrial digitalization:

Firstly, work with the input-output tables. Direct input coefficient is defined as the input of another industry directly consumed by 
unit output in one industry, measured by: 

Ajit =
ajit

TTLit
(2) 

where Ajit is direct input coefficient which refers to the intermediate inputs of industry j required to produce one unit of output in 
industry i year t; ajit refers to the intermediate inputs from industry j to industry i in year t; TTLit refers to total output of industry i in 
year t.

However, direct input coefficient has not covered the indirect economic connections between industries. Total input coefficient 
covers all the indirect connections among varying sectors (Leontief, 1970), the formula is: 

Ejit =
(
I − Ajit

)− 1
− I (3) 

where Ejit refers to total input coefficient matrix which refers to the total intermediate inputs of industry j required to produce one unit 
of output in industry i year t; I refers to identity matrix; Ajit refers to direct input coefficient matrix; 

(
I − Ajit

)− 1 is the Leontief inverse 
matrix.

Secondly, the digital input consumed per unit output of industry is: 

1 This industry is called “Activities of households as employers; undifferentiated goods and services producing activities of households for own 
use”, coded as “T97_T98” in ICIO.
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digital inputit =
∑

Edit (4) 

since there are 4 digital industries in the input-output table of the 45 sectors, the digital input is the sum of the digital intermediate 
inputs of these 4 industries. d refers to 4 digital industries according to Table 1; Edit refers to the intermediate input of digital industry d 
consumed per unit output of industry i in year t.

Finally, the level of industrial digitalization is measured as: 

Digit =
digital inputit × TTLit

TMLit
(5) 

where Digit is the level of industrial digitalization of industry i in year t; digital inputit × TTLit refers to the digital intermediate input of 
industry i in year t. TMLit refers to the intermediate input of industry i in year t.

4.2.2. Carbon dioxide emission intensity (CO2int)
Carbon dioxide emission intensity is the core dependent variable in this paper, defined as tonnes of CO2 per million of gross output. 

We use CO2 emission intensity rather than absolute emission values to exclude pollution effects resulting from production scale 
expansion. The data comes from the CO2 emissions embodied in the international trade database (TeCO2) in the STAN of OECD, matched 
with ICIO.

4.2.3. Other variables
To eliminate the influence of industry factors, we use industry scale, general government final consumption, compensation of 

employees, capital intensity and intermediate input rate as control variables. All data sourced from ICIO and The Trade in Employment 
(TiM) in the STAN database of OECD. Furthermore, to exclude the influence of macro factors at the national level, we use GDP, per 
capita GDP and government final consumption expenditure. According to the previous review, innovation activities and the misuse of 
energy affect pollution emissions (Ali, Bataka, Wonyra, Awade, & Braly, 2024; Shahbaz, Tiwari, & Nasir, 2013). Therefore, we also 
keep the national innovation which is based on the number of trademark applications and energy loss rate as control variables. 
Pollution will be transferred through trade, so the proportion of trade volume to GDP is in the regression. Those data are collected from 
the WDI database of the World Bank. Other variables used in the robustness test, endogenous test and mechanism analysis will be 
introduced in the corresponding chapters later. Table 2 presents the definitions and data sources of the variables used in this study.

The empirical analysis in this paper relies on data that covers 44 industries in South Africa from 2000 to 2018, Table 3 presents the 
descriptive statistics of all variables in this paper.

Table 2 
Main variable definitions and data sources.

Variable Definition Data source

CO2int Carbon dioxide emission intensity OECD
Dig The level of industrial digitalization OECD
GFCF Log of (industry gross fixed capital formation+1) OECD
GGFC Log of (industry final consumption expenditure of general government+1) OECD
LABR Log of (compensation of employees) OECD
INTI Industry ratio of intermediate input to output OECD
CAPint Industry ratio of gross fixed capital formation to employment OECD
GDP Log of (GDP + 1) WDI
GDPPC Log of (per capita GDP + 1) WDI
GovExp Ratio of government final consumption expenditure to GDP WDI
Energy Ratio of energy depletion to GNI WDI
Innovation Log of (trademark applications+1) WDI
Trade Log of (ratio of trade to GDP + 1) WDI
ALT Ratio of alternative and nuclear energy to total energy use WDI
Elec Ratio of electricity, gas, steam, and air conditioning supply to output OECD
M&Q Ratio of mining and quarrying of energy producing materials to output OECD
TDig Log of (digital input+1) OECD
NoDig Log of (intermediate input except for digital input+1) OECD
DomDig Ratio of domestic digital input to intermediate input OECD
ForDig Ratio of digital input from foreign country to intermediate input OECD
RER Weighted real exchange rate WDI
AHS AHS weighted average tariff rate of digital products WITS
MFN MFN weighted average tariff rate of digital products WITS
TFP Log of (total factor productivity+1) OECD
Struct Ratio of high-pollution factors input to intermediate input OECD
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Table 3 
Descriptive statistics of the variables.

VarName Obs Mean SD Min Max

CO2int 836 4.452 2.251 0.000 10.747
Dig 836 0.134 0.084 0.027 0.624
GFCF 836 4.688 2.243 0.000 10.164
GGFC 836 2.724 2.492 0.001 10.715
LABR 836 7.236 1.323 3.318 10.154
INTI 836 0.600 0.150 0.117 0.865
CAPint 836 0.449 0.853 0.000 6.068
GDP 836 26.324 0.156 26.035 26.510
GDPPC 836 8.581 0.084 8.413 8.658
GovExp 836 19.629 1.018 17.814 21.282
Energy 836 1.673 0.813 0.857 4.576
Innovation 836 10.319 0.199 9.922 10.555
Trade 836 4.089 0.088 3.953 4.302
ALT 836 2.554 0.263 2.222 3.182
Elec 836 0.014 0.021 0.000 0.136
M&Q 836 0.015 0.045 0.000 0.281
TDig 836 6.168 1.321 1.728 8.555
NoDig 836 8.811 1.209 4.553 11.035
DomDig 836 5.785 1.352 1.381 8.323
ForDig 836 4.950 1.265 0.965 7.993
RER 836 0.912 0.574 0.027 2.955
AHS 836 0.082 0.090 0.001 0.574
MFN 836 0.112 0.122 0.001 0.905
TFP 836 2.056 0.113 1.600 2.303
Struct 836 0.129 0.111 0.000 0.532

Table 4 
Baseline regression results.

(1) (2) (3) (4)

CO2int CO2int CO2int CO2int
Dig − 8.6931*** − 5.3084** − 4.9832** − 4.7456**

(0.8778) (2.2150) (2.2979) (2.2601)
GFCF 0.0022 0.0012

(0.0603) (0.0587)
GGFC 0.1299 0.0993

(0.0805) (0.0753)
LABR − 0.7285*** − 0.7356***

(0.1912) (0.1661)
INTI − 0.0153 − 0.0477

(0.6129) (0.5908)
CAPint − 0.2965*** − 0.2964***

(0.0856) (0.0896)
GDP 3.2795***

(0.8451)
GDPPC − 3.7462**

(1.5166)
GovExp − 0.1538***

(0.0438)
Energy − 0.0151

(0.0169)
Innovation − 0.3921

(0.3338)
Trade 0.0641

(0.3076)
_cons 5.6160*** 5.1630*** 10.1690*** − 37.0564***

(0.1387) (0.2965) (1.6268) (11.0714)
IndustryFE No Yes Yes Yes
YearFE No Yes Yes No
N 836 836 836 836
r2_a 0.1041 0.9778 0.9804 0.9795

Note: Robust standard errors clustered at industry level are reported in parenthesis in column (2)–(4). * p < 0.1, ** p < 0.05, *** p < 0.01.
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5. Empirical results

5.1. Baseline regression

Table 4 reports baseline results, column (1) regression only includes the core dependent and explanatory variable, controlling fixed 
effects and clustering robust standard error starting from column (2). In order to obtain more accurate results, industry control var-
iables are added in column (3), and column (4) further adds national control variables. The results show that the coefficient of in-
dustrial digitalization (Dig) is significantly positive at the 1 % level in column (1) and 5 % in column (2) to column (4). The baseline 
results indicate that one unit increase in the proportion of digital intermediate input to total intermediate input leads to a reduction of 
4.9832 t of CO2 per million of gross output in column (3) and 4.7456 t of CO2 per million of gross output in column (4). Similar to 
previous literature, industrial digitalization has a significant effect on reducing CO2 emissions, thus supporting Hypothesis 1.

From the perspective of control variables, compensation of employees (LABR) and capital intensity (CAPint) reduce industrial CO2 
emissions. Higher compensation of employees indicates higher wages for employees and greater purchasing power, which indirectly 
reflects the prosperity of the industry. Similarly, higher capital intensity suggests that the industry possesses ample capital and is well- 
developed. Such industries often exhibit higher levels of technological sophistication and production efficiency, thereby providing 
favorable conditions for pollution control measures.

5.2. Endogeneity concerns

We study the effect of industrial digitalization on CO2 emissions, and there is a possibility of reverse causality. When there is a 
significant amount of CO2 emissions in the production process, industries tend to proactively adopt more advanced technologies or use 
cleaner materials due to government reward and punishment policies, social public opinion supervision, and their awareness of 
environmental protection. Therefore, the level of industrial digitalization will be increased to optimize the production links and reduce 
pollution emissions. To address endogeneity concerns and identify the causal effect of industrial digitalization on CO2 emissions 
reduction, we use instrumental variable estimation. It is found that imported digital products and services account for a large pro-
portion of digital input, which is the main driving force for industrial digitalization. We follow Zhu and Tomasi (2020) and Zhang, Liu, 
& Wei (2023) by employing the tariff as instrumental variables for industrial digitalization.

The import tariff on digital products is an official policy formulated by the government and is not directly related to industrial 
digitalization. Thus, it meets the requirements for both the correlation and exogeneity of instrumental variables. Since tariffs are set at 
the national level, we calculated the proportion of digital products imported by each industry relative to the total digital imports of 
South Africa as weighting factors to construct the instrumental variable (IV). The tariff data is sourced from the World Integrated Trade 
Solution (WITS), and in this study, we use two types: Effectively Applied Tariffs (AHS) and Most-Favored Nation Tariffs (MFN). 
Effectively Applied Tariffs refer to the actual tariffs imposed by a country on imported goods which take into account various factors 
and reflect the real tariff burden. Most-Favored Nation Tariffs refer to the lowest tariff treatment agreed under the World Trade Or-
ganization members.

Table 5 indicates that the IVs we adopt for industrial digitalization are strongly relevant and reliable. The coefficient and signif-
icance of digitization become larger after adding instrumental variables. Specifically, the level of industrial digitalization increased by 

Table 5 
Endogeneity test.

(1) (2) (3) (4)

Dig CO2int Dig CO2int
Dig − 7.8273*** − 7.6823***

(1.8167) (1.6872)
AHS 0.4143***

(0.1065)
MFN 0.3202***

(0.0461)
GFCF 0.0014 0.0121 0.0039 0.0115

(0.0029) (0.0615) (0.0025) (0.0613)
GGFC − 0.0032 0.1075 − 0.0046 0.1087

(0.0062) (0.0772) (0.0068) (0.0779)
LABR − 0.0055 − 0.6572** − 0.0159 − 0.6609**

(0.0243) (0.2527) (0.0225) (0.2501)
INTI − 0.0399 0.1649 − 0.0808 0.1557

(0.0569) (0.5916) (0.0557) (0.5896)
CAPint − 0.0042 − 0.3258*** − 0.0116 − 0.3243***

(0.0114) (0.1150) (0.0121) (0.1149)
IndustryFE Yes Yes Yes Yes
YearFE Yes Yes Yes Yes
N 836 836 836 836
Cragg-Donald Wald F 647.134 805.361

Note: Robust standard errors clustered at industry level are reported in parenthesis. * p < 0.1, ** p < 0.05, *** p < 0.01.
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one unit, and CO2 decreased by 7.8273 and 7.6823 t per million of gross output, respectively, if effectively applied tariffs or most- 
favored nation tariffs used as IV. The estimation results of the regressions further confirm the causal correlations between indus-
trial digitalization and the emissions of CO2.

5.3. Robustness test

5.3.1. Adjust the standard errors for clustering
Considering that there may still be some deviation in the baseline regression, this paper uses various methods to test the robustness 

and verify the emission reduction effect of industrial digitalization. Firstly, based on column (2) in Table 5, cluster robust standard 
errors at the industry-year level, as shown in Table 6 column (1). There is no change in the main coefficients of interest, supporting the 
baseline findings.

5.3.2. Substitute instrumental variable
The real exchange rate (RER) takes into account the changes in currencies and inflation of different countries, reflects the relative 

prices of goods and services and shows the real purchasing power of a currency. In the same way as import tariffs, we take the ratio of 
industry imports relative to the total national imports to serve as weighting factors to construct IV.

The results are shown in Table 6 column (2). Although the coefficient becomes smaller and is significant at the 5 % level, it can still 
be proven that digitalization reduces CO2 intensity.

5.3.3. Lag explanatory variable
Generally, it may take a period for digitalization to play its role in production, and the pollution of the whole industry cannot be 

immediately changed. Therefore, we lag the industrial digitalization variable by one period and two periods to capture the possible 
lagged trend, as shown in column (3) and (4) of Table 6. This means that an increase of one unit in industrial digitalization not only 
reduces CO2 in the current year but also leads to a reduction of 7.1223 t of CO2 per million of gross output in the second year and 
6.5039 t in the third year. The coefficients have decreased compared with the current period, indicating that the positive effect of 
digitalization on pollution is long lasting and weakens over time.

Table 6 
Robustness test.

(1) (2) (3) (4) (5) (6) (7)

Adjust cluster 
standard errors

Substitute 
IV

Lag 1 Lag 2 Substitute core 
explanatory variable

Change variables 
calculation method

Add control 
variables

CO2int CO2int CO2int CO2int CO2int CO2int CO2int
Dig − 7.8273*** − 6.2726** − 10.0727*** − 7.0098***

(0.6200) (2.5285) (3.0162) (1.8666)
L.Dig − 7.1223***

(1.7602)
L2.Dig − 6.5039***

(1.5099)
TDig − 1.3127***

(0.2700)
NoDig 0.9386***

(0.3409)
Elec 9.5394**

(3.8430)
M&Q 0.1031

(1.8691)
ALT − 0.1934***

(0.0705)
GFCF 0.0121 0.0067 0.0095 0.0113 − 0.0128 0.0559 0.0021

(0.0242) (0.0616) (0.0617) (0.0603) (0.0562) (0.1067) (0.0584)
GGFC 0.1075*** 0.1197 0.1412* 0.1550* 0.1364 0.0116 0.0732

(0.0367) (0.0790) (0.0795) (0.0808) (0.0961) (0.0796) (0.0630)
LABR − 0.6572*** − 0.6962*** − 0.7831*** − 0.8007*** − 0.3816 − 0.5572 − 0.8790***

(0.0985) (0.2220) (0.2580) (0.2427) (0.3178) (0.3653) (0.0951)
INTI 0.1649 0.0664 0.0621 − 0.0077 3.5312*** 0.6190 − 0.4210

(0.2325) (0.5880) (0.6150) (0.6203) (1.1138) (0.6435) (0.6354)
CAPint − 0.3258*** − 0.3098*** − 0.4270** − 0.4079* − 0.2313*** − 0.3708** − 0.3429***

(0.0880) (0.1011) (0.1957) (0.2301) (0.0730) (0.1642) (0.1260)
IV Yes Yes Yes Yes Yes Yes Yes
IndustryFE Yes Yes Yes Yes Yes Yes Yes
YearFE Yes Yes Yes Yes Yes Yes Yes
N 836 836 792 748 836 802 836

Note: Robust standard errors are clustered at industry-year level in column (1), and industry level in other columns. RER is used as IV in column (2), 
and MFN is used as IV in other columns. * p < 0.1, ** p < 0.05, *** p < 0.01.
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5.3.4. Substitute core explanatory variable
We use digital intermediate input (TDig) as alternative indicator for industrial digitalization and add intermediate input except for 

digital input (NoDig) as the control variable into the model to control for potential bias. The results in column (5) of Table 6 show that 
one unit increase in digital intermediate input can significantly lead to 1.3127 t reduction in CO2 per million of gross output, while 
non-digital intermediate input increases by 0.9386 t CO2 per million of gross output. This can further prove the effect of digitalization 
in the process of industrial production.

5.3.5. Change variables calculation method
In this study, variables are measured by adding 1 and taking the logarithm. Nevertheless, studies have highlighted that log1plus 

regression lacks meaningful interpretation and suffers from inherent biases that tend to have the wrong sign in the expected value 
(Cohn, Liu, & Wardlaw, 2022). We estimate the regression without the addition of 1 to the logarithm in column (6) of Table 6, the 
results are similar to previous regression; despite adjusting indicators, industrial digitalization is still significantly and negatively 
linked to the emissions of CO2 from production.

5.3.6. Add control variables
Several studies have shown that energy consumption has been the main culprit for carbon emissions (Appiah, Li, & Korankye, 2021; 

Zakarya, Mostefa, et al., 2015). Alternative energy has become the heart of the newest wave of energy transformation due to its clean, 
low-carbon, and pollution-free characteristics (Lu, Liu, Mohsin, & Zhang, 2023; Yimen, Hamandjoda, & Meva’ a, L., Ndzana, B., & 
Nganhou, J., 2018). We incorporate three ratios into the estimation to capture additional industrial factors affecting CO2 emissions: 
the ratio of alternative and nuclear energy to total energy use (ALT), the ratio of electricity, gas, steam, and air conditioning supply to 
output (Elec) and the ratio of mining and quarrying of energy producing materials to output (M&Q). The results in column (7) of 
Table 6 indicate that alternative and nuclear energy can reduce CO2. Electricity and gas supply are associated with increased CO2 
intensity, while mining and quarrying have shown no significant impact.

5.4. Heterogeneity analysis

5.4.1. The heterogeneity in different industries
Due to the different production characteristics of industries, there may be differences in the effect of industrial digitalization on 

CO2 emissions. In this chapter, 44 industries are divided into primary industry, secondary industry, and tertiary industry according to 
the fourth edition of the International Standard Industrial Classification of All Economic Activities (ISIC Rev4.0). Since there are too few 
samples in the primary industry, the results are not stable enough to make a judgment. Therefore, this paper focuses on the secondary 
and tertiary industries, results shown in Table 7.

The coefficient of industrial digitalization in the tertiary industry is statistically significant at 1 % level, which shows that one unit 
increase in industrial digitalization can effectively reduce 10.2490 t of CO2 emission per million output in the tertiary industry. 
Surprisingly, the coefficient on the secondary industry is statistically insignificant and has a smaller magnitude.

Table 7 
Heterogeneity analysis.

(1) (2) (3) (4) (5)

the secondary industry the tertiary industry low-digital-skill industry high-digital-skill industry domestic and imported inputs
CO2int CO2int CO2int CO2int CO2int

Dig − 6.0558 − 10.2490*** − 47.5881 − 7.9508***
(5.2470) (0.4678) (27.2966) (1.8333)

DomDig 0.4205
(0.3954)

ForDig − 0.9700***
(0.3315)

GFCF 0.0318 − 0.0143 − 0.1114 0.0745 − 0.0051
(0.1368) (0.0176) (0.1387) (0.0956) (0.0649)

GGFC 0.0686 − 0.0571 0.3592 0.0002 0.1521
(0.1600) (0.0837) (0.2626) (0.1032) (0.1040)

LABR − 0.9613*** 0.5573* − 0.0436 − 0.6133* − 0.3225
(0.3148) (0.2855) (0.6744) (0.3143) (0.2707)

INTI − 2.0155 1.6965*** 1.7427 0.0941 2.0935*
(1.2631) (0.3364) (2.0254) (0.8034) (1.1845)

CAPint − 0.2732** − 0.0703 0.1044 − 0.3556** − 0.1627**
(0.1041) (0.1226) (0.3033) (0.1318) (0.0761)

IV Yes Yes Yes Yes Yes
IndustryFE Yes Yes Yes Yes Yes
YearFE Yes Yes Yes Yes Yes
N 437 361 171 665 836
P-value 4.1932** 39.6372***

Note: Robust standard errors clustered at industry level are reported in parenthesis. This table and all tables below use AHS as IV. * p < 0.1, ** p <
0.05, *** p < 0.01. The coefficient difference test between groups is obtained by Fisher’ s Permutation test (Bootstrap 1000 times).
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A possible explanation is that the secondary industry mainly includes mining, manufacturing, construction, etc., which consume 
large amounts of energy and raw materials for production and produce industrial waste (Zhao, Min, Geng, et al., 2017). Heavy industry 
has a strong dependence on high-polluting energy and large-scale facilities. As a result, the attributes and structure of its input factors 
cannot be changed as much in the short term as the service industry. For example, the chemical industry cannot quickly transition from 
being an oil-dependent polluting sector to one that primarily utilizes solar energy. Moreover, the secondary industry faces high barriers 
to adopting and applying digital inputs, requiring a large amount of capital and supporting technology. Additionally, the use of digital 
inputs directly emits CO2 and this pollution may not be offset by productivity improvements (Afzal & Gow, 2016). These factors have 
led to the insignificant environmental optimization effect brought by the digitalization of the secondary industry.

The tertiary industry is mostly labor-intensive and technology-intensive and has a lower energy investment. Technological progress 
and labor efficiency brought by digitalization are likely to have significant impacts on these industries. Thus, industrial digitalization 
serves as a catalyst for the evolution of production methodologies within the tertiary industry. This transformative process leads to a 
noticeable reduction in emission intensity related to industrial pollution and waste (Jiang, Huang, & Yang, 2019).

In the primary industry, where agriculture, forestry, fishing, and animal husbandry dominate, the pollution resulting from the 
production process is considerably lower compared to other industrial sectors. This does not imply that digitalization has a negligible 
impact, modern agriculture has increasingly adopted digital technologies. Cramer and Chisoro-Dube (2021) find the fruit industry in 
South Africa has full access to technologies, including precision farming and post-harvest production technologies such as digital 
platforms and the Internet of Things. These technologies are transforming the structure of fruit production, enhancing productivity, 
and potentially affecting CO2 emissions.

5.4.2. The heterogeneity in different levels of industrial digital skill
Heterogeneity in the characteristics of technology will affect the process and impact of digitalization, such as the extent of 

complexity in ICT applications (Fareri, Apreda, Mulas, & Alonso, 2023). Skills for Jobs database of OECD provides an overview of the 
shortages and surpluses of skills across industries (See Table B). We use the “Digital Skills” index and take the average value to measure 
the level of digital skills of the industry. If the comparative need for digital skills of employees in an industry is greater than 0, it means 
that the industry has a high demand for digital skills and is classified as a high-digital-skill industry. Similarly, industries with a 
comparative need for digital skills less than 0 are identified as low-digital-skill industries. The regression results are shown in column 
(3) and (4) of Table 7. Our findings indicate that high-digital-skill industry provides robust infrastructure and talent pool, facilitating 
digital transformation and contributing to emission reductions. Conversely, industries with low digital skills face limitations due to 
inadequate digital foundations, and as a result, digitalization has no significant impact on CO2 emissions.

5.4.3. The heterogeneity in different sources of digital input
According to the input-output table, there are two sources of digital intermediate inputs: domestically produced digital interme-

diate products and services, and digital intermediate products and services imported from abroad. In column (5) of Table 7, we discuss 
the effects of domestic digital input (DomDig) and imported digital input (ForDig) on CO2 emissions, respectively. In comparison to 
domestic digital inputs, the coefficient for imported digital inputs is both larger and exhibits greater statistical significance. This 
suggests that in the process of industrial digital transformation, imported digital products and services play a more robust role in 
emissions reduction, while the emissions reduction effect of domestically sourced digital inputs is relatively weaker as shown by the 

Table B 
Low-digital-skill and high-digital-skill measured by Skill for Job database.

Nace Description Matched Industry in STAN Digital 
Score

S Other Service Activities D94T96 − 0.354
L Real Estate Activities D68 − 0.225
A Agriculture, Forestry and Fishing D01T02, D03 − 0.126
I Accommodation and food service activities D55T56 − 0.119
B Mining and Quarrying D05T06, D07T08, D09 − 0.094
F Construction D41T43 − 0.07
G Wholesale and Retail Trade; Repair of Motor Vehicles and Motorcycles D45T47 0.007
C Manufacturing D10T12, D13T15, D16, D17T18, D19, D20, D21, D22, D23, 

D24, D25, D26, D27, D28, D29, D30, D31T33
0.008

P Education D85 0.042
Q Human Health and Social Work Activities D86T88 0.092
D Electricity, Gas, Steam and Air Conditioning Supply; Water Supply; 

Sewerage, Waste Management and Remediation Activities D35, D36T39 0.123

R Arts, Entertainment and Recreation D90T93 0.144
H Transportation and Storage D49, D50, D51, D52, D53 0.147
K Financial and Insurance Activities D64T66 0.245
J Information and Communication D58T60, D61, D62T63 0.298
O Public Administration and defence; Compulsory Social Security D84 0.357
M-N Professional, scientific and technical activities; administrative and support 

service activities D69T75, D77T82 *

* Indicates missing data.
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insignificant coefficient.
The reasons mainly include two aspects: First, the production of digital products relies on energy sources such as electricity and 

digital infrastructure, which are major contributors to carbon emissions. Consequently, as the input of domestic digital products in-
creases, so does the consumption of production materials and digital infrastructure, leading to an increase in pollution emissions, 
thereby weakening or even offsetting the emissions reduction effect (Shehzad et al., 2020).

Second, digital products have high technical barriers. South Africa lacks the necessary R&D capital and talent to support the design 
and production of high-digital-technology products in the short term. As a result, there is a trend toward importing digital products 
that are more cutting-edge and environmentally friendly in terms of digital technology. In contrast, domestic digital products tend to 
have lower digital technology, resulting in a weaker effect on emissions reduction (Li, Zhang, & Li, 2023); another approach is to 
import intermediate products containing core digital technologies, process and transform them domestically, and incorporate them 
into production.

5.5. Mechanism analysis

According to our previous analysis, industrial digitalization contributes to the reduction of CO2 intensity. In this section, we 
employ a mediation model to further explore the mechanism of industrial digitalization on emission reduction from two aspects: 
increasing productivity and optimizing the factor input structure, and incorporate the instrumental variable of AHS in the model 
following Dippel, Ferrara, and Heblich (2020).

The model is as follows: 

Mediatorit = α0 +α1Digit +Xit + δi + δt + εit (6) 

CO2intit = γ0 + β2Digit + α2Mediatorit +Xit + δi + δt + εit (7) 

where i is an industry, t is a year; CO2intit is carbon dioxide emission intensity; Digit is the level of industrial digitalization; Mediatorit is 
mediator (productivity and factor input structure).

According to Baron and Kenny (1986) and Preacher and Hayes (2004), if β1, α1, α2 are significant; the sign of β2 remains un-
changed, and the absolute value is less than β1; α1α2 and β1 has the same sign, then there has a mediating effect. Furthermore, if β2 is 
not significant means a full mediating effect; if β2 is significant and shares the same sign as β1, this indicates a partial mediating effect.

5.5.1. Productivity mechanism
In order to explore the role of productivity in the relationship between industrial digitalization and CO2 emissions, we use the LP 

method to calculate the total factor productivity (TFP) of the industry and incorporate it into the regression as a mediator. Digital 
technology may convert repetitive work into machine work, thus allowing employees to focus more on high-value-added work, which 
improves employee productivity; it optimizes production links by managing equipment and resources, expedites the collection, 
analysis, and utilization of data, reducing losses caused by asymmetry information. Ultimately, this enhances total factor productivity, 
the results are presented in Table 8. The significant positive productivity coefficient in column (1) indicates that one percentage point 
increase in industrial digitalization corresponds to 0.1920 percentage points higher in productivity. The industrial digitalization 

Table 8 
Mechanism analysis.

(1) (2) (3) (4)

TFP CO2int Struct CO2int
Dig 0.1920* − 7.5357*** − 0.9541*** − 5.0742**

(0.0996) (2.0222) (0.2245) (2.1980)
TFP − 3.0758*

(1.5523)
Struct 2.8855***

(0.8964)
GFCF − 0.0119*** − 0.0386 0.0066 − 0.0069

(0.0042) (0.0616) (0.0042) (0.0568)
GGFC 0.0062 0.1163 − 0.0038 0.1185*

(0.0094) (0.0783) (0.0125) (0.0620)
LABR − 0.3711*** − 0.4097 − 0.0073 − 0.6361***

(0.1120) (0.2931) (0.0266) (0.1981)
INTI − 0.0748 0.6829 − 0.0343 0.2638

(0.0581) (0.7146) (0.0662) (0.5114)
CAPint − 0.0109** − 0.2852*** − 0.0148 − 0.2830***

(0.0053) (0.1047) (0.0117) (0.0823)
IV Yes Yes Yes Yes
IndustryFE Yes Yes Yes Yes
YearFE Yes Yes Yes Yes
N 836 836 836 836

Note: Robust standard errors clustered at industry level are reported in parenthesis. * p < 0.1, ** p < 0.05, *** p < 0.01.
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coefficient in column (2) is 7.5357, which is significantly reduced compared to 7.8273 in Table 8. Therefore, hypothesis H2 can be 
verified, industrial digitalization enhances industry productivity, thereby reducing CO2 emissions. These findings align with the 
theoretical analysis mentioned above.

5.5.2. Factor input structure mechanism
We divide the industries whose carbon dioxide emission intensity is in the top 10 % as high-pollution industries. The input structure 

(Struct) is measured by the proportion of input from high-pollution factors to intermediate input and used as the mediator. The results 
are shown in columns (3) and (4) of Table 8. Obviously, the more products and services inputs from high-pollution industries are used, 
the higher CO2 emission intensity in the production. Industrial digitalization can reduce the ratio of high-pollution input to inter-
mediate input by technology spillover effect and input substitution. Firstly, as production materials, digital inputs directly replace 
those traditional high-pollution production materials, decreasing the share of high-pollution inputs; secondly, digitalization brings 
advanced technologies, which are often used to transform traditional raw materials from high-pollution into low-pollution; Thirdly, as 
digital inputs increase, the industry tends to aggressively seek other high-tech materials to match those digital inputs, thereby 
maximizing the utilization of production factors. These high-tech materials often possess cleaner attributes, so digitalization can 
reduce the proportion of input from high-pollution factors to intermediate input, and optimize the factor input structure to reduce CO2 
in production, which verifies hypothesis H3.

5.6. Further analysis

As mentioned above, industrial digitalization in South Africa significantly reduces the intensity of CO2 emissions in production. In 
this section, we compare South Africa with the other four BRICS countries in Table 9.

The results show that industrial digitalization in Brazil, South Africa, and China has emission reduction effects. The coefficients for 
South Africa and Brazil are significant at the 1 % level, with Brazil’s coefficient being the highest in absolute terms (11.2287), followed 
by South Africa (7.8273). It can be seen that the digitalization of industries in Brazil is developing rapidly and has the most significant 
positive effect on the environment, related to that the Brazilian federal government has attached great importance to and made 
strategic actions for digital transformation in recent years (Bower, 2023; de Lima & da Silva, 2023). The industrial digitalization 
coefficient in China is significant at the 10 % level, weaker than the other 2 countries. However, industrial digitalization in India and 
Russia has not found any obvious effect.

The possible reason is that while industrial digitalization improves productivity and output, it may overlook the cleaner trans-
formation of technologies and processes. Industries still use traditional raw materials and production methods with high energy 
consumption and high pollution. Fang, Jiang, Hussain, Zhang, and Huo (2022) proposed that Russia’s abundant mineral and energy 
resources will lead to the migration of polluting manufacturing industries, so pollution will not decrease in the short term despite an 
increase in digital inputs from abroad. Therefore, industrial digitalization in Russia and India cannot fully realize its emission- 
reduction effect.

6. Conclusions and policy implications

The green attribute of industrial digitalization is in line with the pursuit of high-quality economic development in Africa, con-
forming to the global sustainable development trend. In the critical period of economic transformation and upgrading, how to fully 
exploit the emission reduction effect of industrial digitalization should be a matter of public concern in the world with strong practical 
significance.

We use the OECD input-output table to explore the impact of the industrial digitalization of 44 industries in South Africa on the 
carbon dioxide emission intensity in production from 2000 to 2018. The findings reveal that industrial digitalization significantly 
reduces the CO2 emission intensity in production through increasing productivity and optimizing factor input structure mechanisms. 
The effect of industrial digitalization on CO2 emission is more prominent for the tertiary industry and those industries with high digital 
skills. The imported digital input from abroad has a greater impact on CO2 emissions than domestic digital input. Among the BRICS 
countries, industrial digitalization in Brazil has the leading position in reducing emissions, followed by South Africa and China, while 
the industrial digitalization of India and Russia does not affect pollution. Based on the above conclusions, we aim to provide evidence 
to support Africa’s industrial transformation and green economy, as well as provide guidance to developing countries worldwide. This 
study proposes the following countermeasures and suggestions:

Digitalization, with its unique attributes, can simultaneously address both production and environmental conservation concerns, 
providing South Africa with new opportunities to develop a more environmentally-sound future. Therefore, in the process of industrial 
digital transformation, it is important to consider cleaner technology innovations alongside productivity improvements, so as to create 
environment-friendly industries and achieve sustainable development.

According to our study, imported digital inputs play a great role in technology spillovers. It is imperative for the South African 
government to give support on the importation of digital technologies and products, reducing digital trade barriers would be an 
effective approach. Additionally, heterogeneity analysis indicates that talent is a prerequisite for digital technology applications. 
Industries should increase incentives for digital skills in respect of on-the-job training to fully utilize digital inputs and integrate 
advanced technologies into local production processes, thereby achieving a balance of improving productivity and reducing pollution. 
For developing countries, digital transformation presents an important opportunity to improve the position of the global value chain 
and contribute to pollution treatment. Governments should develop a comprehensive digitalization strategy that defines digitalization 

Y. Wei et al.                                                                                                                                                                                                            China Economic Review 88 (2024) 102266 

13 



goals, policy frameworks, and visions to coordinate and guide digital development.
There may be some limitations in this study. We have not conducted a cost-benefit analysis due to data limitations. Although there 

has been substantial evidence for various benefits of industrial digitalization, not all countries and industries are equally equipped and 
suited to undertake this transformation. More attention should be paid to the costs of digitization. Firstly, digital patents and 
equipment often require a significant amount of funding, especially in countries with weak R&D capabilities that rely on importing 
digital products; secondly, digitalization is supported by skilled professionals and digital infrastructure, such as base stations and 
industrial internet platforms, which need investment from government or enterprises. Finally, even though this paper shows that 
digitalization has the benefit of reducing CO2 emissions, its effects vary depending on the circumstances. Pollution is a complex 
consequence of forces connected with various interrelating factors, countries and industries should consider whether to use digita-
lization or other more suitable ways for pollution control according to their current status and characteristics.
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Appendix A. Appendix

Table A 
Industry Description.

Industry Code in STAN ISIC 4 Corresponding Division Description

D01T02 01, 02 Agriculture, hunting, forestry
D03 3 Fishing and aquaculture
D05T06 05, 06 Mining and quarrying, energy producing products
D07T08 07, 08 Mining and quarrying, non-energy producing products
D09 9 Mining support service activities
D10T12 10, 11, 12 Food products, beverages and tobacco
D13T15 13, 14, 15 Textiles, textile products, leather and footwear

(continued on next page)

Table 9 
Further analysis.

(1) (2) (3) (4) (5)

South Africa China Russian India Brazil
CO2int CO2int CO2int CO2int CO2int

Dig − 7.8273*** − 1.2085* − 1.6758 − 17.7527 − 11.2287***
(1.8167) (0.6511) (1.3256) (20.7731) (3.8503)

GFCF 0.0121 0.0005 − 0.0482 − 0.0098 − 0.1450
(0.0615) (0.0303) (0.0627) (0.0706) (0.0997)

GGFC 0.1075 0.0353 0.0863** 0.0453 − 0.0041
(0.0772) (0.0424) (0.0376) (0.0729) (0.0718)

LABR − 0.6572** − 0.0817 − 0.0927 − 0.2435 − 0.0289
(0.2527) (0.0988) (0.0982) (0.2407) (0.1858)

INTI 0.1649 0.8085** 0.5451 1.0450 0.6455
(0.5916) (0.3691) (0.7258) (0.8420) (0.9710)

CAPint − 0.3258*** − 0.0043* 0.0099*** − 0.0217*** − 0.0066
(0.1150) (0.0022) (0.0017) (0.0078) (0.0075)

IV Yes Yes Yes Yes Yes
IndustryFE Yes Yes Yes Yes Yes
YearFE Yes Yes Yes Yes Yes
N 836 836 836 836 836

Note: Robust standard errors clustered at industry level are reported in parenthesis. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A (continued )

Industry Code in STAN ISIC 4 Corresponding Division Description

D16 16 Wood and products of wood and cork
D17T18 17, 18 Paper products and printing
D19 19 Coke and refined petroleum products
D20 20 Chemical and chemical products
D21 21 Pharmaceuticals, medicinal chemical and botanical products
D22 22 Rubber and plastics products
D23 23 Other non-metallic mineral products
D24 24 Basic metals
D25 25 Fabricated metal products
D26 26 Computer, electronic and optical equipment
D27 27 Electrical equipment
D28 28 Machinery and equipment, nec
D29 29 Motor vehicles, trailers and semi-trailers
D30 30 Other transport equipment
D31T33 31, 32, 33 Manufacturing nec; repair and installation of machinery and equipment
D35 35 Electricity, gas, steam and air conditioning supply
D36T39 36, 37, 38, 39 Water supply; sewerage, waste management and remediation activities
D41T43 41, 42, 43 Construction
D45T47 45, 46, 47 Wholesale and retail trade; repair of motor vehicles
D49 49 Land transport and transport via pipelines
D50 50 Water transport
D51 51 Air transport
D52 52 Warehousing and support activities for transportation
D53 53 Postal and courier activities
D55T56 55, 56 Accommodation and food service activities
D58T60 58, 59, 60 Publishing, audiovisual and broadcasting activities
D61 61 Telecommunications
D62T63 62, 63 IT and other information services
D64T66 64, 65, 66 Financial and insurance activities
D68 68 Real estate activities
D69T75 69 to 75 Professional, scientific and technical activities
D77T82 77 to 82 Administrative and support services
D84 84 Public administration and defence; compulsory social security
D85 85 Education
D86T88 86, 87, 88 Human health and social work activities
D90T93 90, 91, 92, 93 Arts, entertainment and recreation
D94T96 94,95, 96 Other service activities
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